

On-lineOn-demandOff-lineMay 24 (Tue.), 2022, 18:30-19:30 / Convention Hall B

01. AlNBulk Crystals and Templates

[P-01]

Growth of AIN Layer on Hole-Type PSS for DUV LED by HVPE Young Jun Choi¹, Hae-Gon Oh¹, Hae-Yong Lee¹, Seung-Jae Lee²

¹LumiGNtech Co., Ltd., Korea, ²Korea Photonics Technology Institute, Korea

[P-02]

High Quality AlN Layer Growth with O_2/H_2 on C Plain Sapphire Substrate by HVPE

Jae-Hoon Lee, Hae-Gon Oh, Young Jun Choi, Hae-Yong Lee *LumiGNtech Co., Ltd., Korea*

[P-03]

Crystallinity Improvement and Carbon-Oxygen Analysis of AIN Single Crystal Grown by Physical Vapor Transport

Jeongwoon Kim¹, Yong-Hyeon Kim², Jinsoo Kim¹, Sunwoo Shin¹, Dong-Seon Lee¹, Si-Young Bae² ¹Gwangju Institute of Science and Technology, Korea, ²Korea Institute of Ceramic Engineering and Technology, Korea

[P-04]

The N-Polar and Al-Polar AlN Fabricated by Sputtering with Al Target and High-Temperature Annealing

Zhibin Liu^{1,2}, Yanan Guo^{1,2}, Jianchang Yan^{1,2}, Jimin Li^{1,2}, Junxi Wang^{1,2} ¹*Chinese Academy of Sciences, China,* ²*University of Chinese Academy of Sciences, China*

[P-05]

Effects of Different Buffer Layers on the Surface Morphology and the Crystallinity of a–Plane AlN Films Grown on $r-Al_2O_3$

Tingsong Cai^{1,2}, Yanan Guo^{1,2}, Zhibin Liu^{1,2}, Xiaoyan Yi^{1,2}, Jinmin Li^{1,2}, Junxi Wang^{1,2}, Jianchang Yan^{1,2} ¹Chinese Academy of Sciences, China, ²University of Chinese Academy of Sciences, China

02. Growth and Properties of AlGaN Heterostructures

[P-06]

Structural and Transport Properties of Si–Doped Short–Period AIN/GaN Superlattices Grown by MBE Siqi Li¹, Pengfei Shao¹, Dongqi Zhang¹, Tao Tao¹, Zili Xie¹, Dunjun Chen¹, Bin Liu¹, Ke Wang¹, Youdou Zheng¹, Rong Zhang^{1,2} ¹Nanjing University, China, ²Xiamen University, China

[P-08]

The Effect of Oxygen Incorporation in Al_xGa_{1-x}N Layers Grown by Hydride Vapor Phase Epitaxy Chang Wan Ahn¹, Sung Soo Park², Eun Kyu Kim¹ *¹Hanyang University, Korea, ²Jeonju University, Korea*

[P-09]

The Effect of AlGaN Interlayer in AlN Buffer–Based Double–Hetero Structure HEMT Keono Kim, Minho Kim, Yunseok Heo, Uiho Choi, Okhyun Nam

Tech University of Korea, Korea

[P-10]

Stability of Graphene on AIN Template during GaN Growth in Metal–Organic Chemical Vapor Deposition

Hoe-Min Kwak, Je-Sung Lee, Woo-Lim Jeong, Kyung-Pil Kim, Seung-Hyun Mun, Dong-Seon Lee *Gwangju Institute of Science and Technology, Korea*

[P-11]

The Effect of Nitrogen Flow Rate on Structure and Composition of AlGaN Nanowires in Plasma-Assisted Molecular Beam Epitaxy

Mun-Do Park¹, JaeYoung Baik¹, Jun-Yeob Lee¹, Soo-Young Choi¹, Jeong-Hwan Park², Dong-Seon Lee¹ ¹Gwangju Insititute of Science and Technology, Korea, ²Nagoya University, Japan

[P-12]

Growth of AlGaN/GaN/AIN Double-Hetero Structure HEMT by Epilayer Engineering

Minho Kim, Keono Kim, Seongmin Kang, Yunseok Heo, Uiho Choi, Okhyun Nam *Tech University of Korea, Korea*

[P-13]

Photoluminescence Properties of UVB Emitting $Al_yGa_{1-y}N/Al_xGa_{1-x}N$ Quantum Wells and Quantum Dots

Mathieu Leroux¹, Julien Brault², M. Ajmal Khan², Pierre Valvin³, Hideki Hirayama², Bernard Gil³ ¹CNRS-CRHEA, France, ²RIKEN, Japan, ³CNRS-The University of Montpellier, France

03. BN Growth and Fundamental Properties

[P-16]

Effect of Pt Crystal Surface on Hydrogenation of Monolayer h–BN and its Conversion to Graphene MinSu Kim, Hyeon Suk Shin *Ulsan National Institute of Science and Technology, Korea*

[P-17]

Impact of Solvent Composition on the Properties of hBN Crystals Grown from Molten Metal Solutions Eli Janzen¹, Bernard Gil², Guillaume Cassabois², Pierre Valvin², Adrien Rousseau², J H Edgar¹ ¹Kansas State University, USA, ²CNRS-The University of Montpellier, France

[P-18]

High–Quality Boron Nitride Thin Films Fabricated by Solution Process at Low–Temperatures for Flexible Nanoelectronics

Sang-Joon Park, Jun-Young Jeon, Tae-Jun Ha *Kwangwoon University, Korea*

[P-19]

Van der Waals Heterostructure of Hexagonal Boron Nitride with an AlGaN/GaN Epitaxial Wafer for High-Performance Radio-Frequency Applications

Seokho Moon, Jiye Kim, Jaewon Kim, Jong Kyu Kim Pohang University of Science and Technology, Korea

04. Growth and Properties of Oxides (Ga₂O₃etc.) and Diamond

[P-20]

Structural and Electrical Characterizations of ϵ -Ga₂O₃ Thin Films Grown on SiC Substrates Using Mist Chemical Vapor Deposition

Seong-Ho Cho^{1,2}, Min-Seong Kong^{1,3}, Yun-Ji Shin¹, Minh-Tan Ha¹, Seong-Min Jeong¹, Se Hun Kwon², Min-Su Park³, Si-Young Bae¹ ¹Korea Institute of Ceramic Engineering and Technology, Korea, ²Pusan National University, Korea, ³Dong-A University, Korea

[P-21]

Numerical Simulation of Edge-Defined Film-Fed Growth for High-Quality Ga2O3 Single Crystal

Su-Min Lim^{1,2}, Nhat-Minh Phung^{1,3}, Minh-Tan Ha¹, Yun-Ji Shin¹, Young-Soo Lim², Si-Young Bae¹, Seong-Min Jeong¹

¹Korea Institute of Ceramic Engineering and Technology, Korea, ²Pukyong National University, Korea, ³Changwon National University, Korea

[P-22]

Investigation of Dislocation and Electrical Property of Homoepitaxial Ga2O3 Films

Vuong Quoc Nguyen, Trong Si Ngo, Soon-Ku Hong *Chungnam National University, Korea*

[P-23]

Numerical Investigation of Enhancement–Mode β –Ga₂O₃ Vertical MOSFETs via Process and Device Simulations

In Ki Kim, Suhyeong Cha, Sung-Min Hong Gwangju Institute of Science and Technology, Korea

[P-24]

Comparison of Admittance Spectra of Diamond and β -Ga₂O₃ as Semiconductors for UV Solar-Blind Photodetectors

Vasily Zubkov, Anna Solomnikova Saint Petersburg Electrotechnical University, Russia

[P-25]

Electrical Properties of Metal-Insulator-Semiconductor Structure Diamond Schottky Barrier Diode Grown on Hetero-Epitaxial Diamond Substrate

Sanghun Han¹, Taemyung Kwak¹, Uiho Choi¹, Hyeonu Kang¹, Geunho Yoo¹, Seong-woo Kim², Okhyun Nam²

¹Tech University of Korea, Korea, ²Adamant Namiki Precision Jewel Co., Ltd., Japan

[P-27]

Growth and Characterization of Heteroepitaxial (001) and (111) Diamond on Ir/Sapphire Structures

Uiho Choi¹, Heejin Shin¹, Taemyung Kwak¹, Seongwoo Kim², Okhyun Nam¹ ¹Tech University of Korea, Korea, ²Adamant Namiki Precision Jewel Co., Ltd., Japan

[P-28]

Rutile GeO₂ Film with (100) Orientation Grown on c−**Plane Sapphire Substrate by Pulsed Laser Deposition** Gaofeng Deng, Katsuhiko Saito, Tooru Tanaka, Qixin Guo *Saga University, Japan*

[P-29]

Characteristic Analysis of High Purity of Single Crystal and Impurty Revmoval Using Pretreatment of CaF_2 Raw Materials

June-Hyuk Kang, Doo-Gun Kim, Joo-Hyun Choi, Sun-Hoon Kim *Korea Photonics Technology Institute, Korea*

[P-30]

Spatial Variation in Quality of Ga₂O₃ Single Crystal Grown by Edge–Defined Film–Fed Growth Method Su–Bin Park¹, Tae–Wan Je¹, Hui–Yeon Jang¹, Su–Min Choi¹, Mi–Seon Park¹, Yeon–Suk Jang¹, Yoon–

Su-Bin Park', Tae-Wan Je', Hui-Yeon Jang', Su-Min Choi', Mi-Seon Park', Yeon-Suk Jang', Yoon-Gon Moon², Jin-Ki Kang², Won-Jae Lee¹ 1 Dong-Eui University, Korea, ²AXEL, Korea

[P-31]

Effect of Graphene Preparation on Remote Epitaxy of Single-Crystalline *ε*-Ga₂O₃

Jung-Hong Min¹, Neeraj Mishra², Kuang-hui Li¹, Stiven Forti², Tae-Yong Park¹, Tien Khee Ng¹, Camilla Coletti², Boon S. Ooi¹

¹King Abdullah University of Science and Technology, Saudi Arabia, ²Italian Institute of Technology, Italy

[P-33]

LiTaO₃ Single Crystal Growth with Four Inches Diameter Using Czochralski Method June-Hyuk Kang, Doo-Gun Kim, Joo-Hyun Choi, Sun-Hoon Kim *Korea Photonics Technology Institute, Korea*

[P-34]

Strain Relaxation and Dislocation Annihilation in Compositionally Graded α -(Al_xGa_{1-x})₂O₃ Layer for High Voltage α -Ga₂O₃ Power Devices

Byungsoo Kim, Duyoung Yang, Euijoon Yoon, Yongjo Park, Ho Won Jang Seoul National University, Korea

[P-35]

Study on Growth of High–Quality α –Ga₂O₃ on Sapphire Nanomembrane by Mist CVD

Duyoung Yang, Byungsoo Kim, EuijoonYoon, Yongjo Park, Ho Won Jang Seoul National University, Korea

05. UV-emitters (Lasers and LEDs) and Detectors

[P-38]

Lateral Patterning in Technology of AlGaInN UV-A Laser Diodes

Robert Czernecki^{1,2}, Ewa Grzanka^{1,2}, Mikolaj Grabowski¹, Artur Lachowski¹, Szymon Grzanka^{1,2}, Mike Leszczynski^{1,2} ¹Institute of High Pressure Physics, Poland, ²TopGaN Ltd., Poland

[P-39]

High Efficient ZnO-Based Ultraviolet Photodetector with Carbon Nanotube-Based Self-Heating System Jeong-Hyeon Kim, Gun-Woo Lee, Sung-Nam Lee *Tech University of Korea, Korea*

[P-40]

Study on Nano-Wrinkle Network Structured ZnO Ultraviolet Photodetector Using Sol-Gel Process

Jongyun Choi, Gun-Woo Lee, Sung-Nam Lee Tech University of Korea, Korea

[P-41]

Analysis of TM Polarization Ratio in UVC-LEDs with 3D K·P Method by Considering Random Alloy Fluctuation

Yu-Chieh Chang, Huan-Ting Shen, Yuh-Renn Wu National Taiwan University, Taiwan

[P-42]

Solar-Blind Ultraviolet Photodetectors with Reduced Graphene Oxide Electrodes

Bhishma Pandit, Jaehee Cho Jeonbuk National University, Korea

[P-43]

Improved GaN–Based Light–Emitting Diodes Grown on Si (111) Substrates with NH_3 Growth Interruption

Gyeong-Hun Jung¹, Sohyeon Kim¹, Taehyeon Kim¹, Minji Kim¹, Hannah Lee¹, Min-Woo Park¹, Se-Mi Oh², Sang-Jo Kim³, Kyoung-Kook Kim¹ ¹Tech University of Korea, Korea, ²University of Michigan, USA, ³Gwangju Institute of Science and Technology, Korea

[P-44]

Enhanced Photon Emission Efficiency Using Surface Plasmon Effect of Pt Nanoparticles for Ultra-Violet Emitter

Minji Kim¹, Hee-Jung Choi¹, Sohyeon Kim¹, Hannah Lee¹, Taehyeon Kim¹, GyeongHun Jung¹, Semi Oh², Kyoung-Kook Kim¹ ¹Tech University of Korea, Korea, ²University of Michigan, USA

[P-45]

Far-UVC Emission of Polarity-Engineered AlGaN MQW Using Carbon Nanotube-Based Cold Cathode Electron Beam

Uiho Choi¹, Sung Tae Yoo², Minho Kim¹, Byeongchan So³, Changheon Cheon¹, Mino Yang⁴, Moonsang Lee⁵, Kyu Chang Park², Okhyun Nam¹

¹Tech University of Korea, Korea, ²Kyung Hee University, Korea, ³Karlsruhe Institute of Technology, Germany, ⁴Korea Basic Science Institute, Korea, ⁵Inha University, Korea

[P-46]

Improving Performance of AlGaN-Based UVC LEDs by Using Chlorinated Indium Tin Oxide Electrodes Su-Kyung Kim¹, Kee-Baek Sim¹, Jun-Young Jin^{1,2}, Young-Jin Ko³, Gyu-Weon Hwang², Tae Yeon Seong¹, Hiroshi Aman³

¹Korea University, Korea, ²Korea Institute of Science and Technology, Korea, ³Nagoya University, Japan

[P-47]

Revealing the Effect of n-GaN Thickness on the Efficiency of InGaN/AlGaN Multiple-Quantum-Well Near-Ultraviolet Light-Emitting Diodes

Abu Bashar Mohammad Hamidul Islam¹, Tae Kyoung Kim¹, Yu-Jung Cha¹, Jae Won Seo¹, Jong-In Shim², Dong-Soo Shin², Joon Seop Kwak¹ *¹Korea Institute of Energy Technology, Korea, ²Hanyang University, Korea*

[P-48]

Size-Dependent Optoelectronic Performances in InGaN/AlGaN Flip-Chip Near-Ultraviolet Micro Light-Emitting Diodes

Tae Kyoung Kim¹, Abu Bashar Mohammad Hamidul Islam¹, Yu–Jung Cha¹, Jae Won Seo¹, Jong–In Shim², Dong–Soo Shin², Joosun Yun³, Joon Seop Kwak¹ ¹Korea Institute of Energy Technology, Korea, ²Hanyang University, Korea

06. Nanostructures and Nanodevices

[P-49]

Highly Efficient Yarn Fabricated Utilizing Perovskite Quantum Dot Seong Su Choi, Dae Hun Kim, Tae Whan Kim Hanyang University, Korea

[P-50]

Self-Healable Memristive Devices Based on a Zein Active Layer Inserted with Graphene Quantum Dots Yoon Chul Hwang, Jun Seop An, Youngjin Kim, Tae Whan Kim Hanyang University, Korea

[P-51]

Ultra-Long n-GaN Microwire Structures for UV Photodetector

Jeong-Kyun Oh, Yong-Ho Ra, Dae-Young Um, Bagavath Chandran, Sung-Un Kim, Ji-Yeon Kim, Cheul-Ro Lee Jeonbuk National University, Korea

[P-52]

GaN Nanorod LEDs with Thick p-Ohmic Contact Metal

Yeong-Hoon Cho, Taehwan Kim, Hoo Yeon Kim, Soyeon Park, In-Hwan Lee Korea University, Korea

[P-53]

Nano-Scale Bottom-Emitting Nanowire LEDs with Monolithic Aluminum Core-Shell Reflector Sung-Un Kim, Dae-Young Um, Jeong-Kyun Oh, Cheul-Ro Lee, Yong-Ho Ra Jeonbuk National University, Korea

[P-54]

High Efficiency Blue InGaN/GaN Nanorod LEDs Coupled with Localized Surface Plasmon So Yeon Park, Taehwan Kim, Yeong-Hoon Cho, In-Hwan Lee *Korea University, Korea*

[P-55]

AlGaInP Red Nanostructure LED with Star–Shaped Au/SiO₂ Nanoparticles for Localized Surface Plasmon Hooyeon Kim, Taehwan Kim, In–Hwan Lee Korea University, Korea

[P-56]

Self-Aligned Hierarchical ZnO Nanorod /NiO Nanosheet Arrays for High Photon Extraction Efficiency of GaN-Based Photonic Emitter

Young-Hyeun Kim¹, Won-Seok Lee¹, Min-Woo Park¹, Hannah Lee¹, Semi Oh², Kyoung-Kook Kim¹ ¹Tech University of Korea, Korea, ²University of Michigan, USA

[P-57]

Ultraviolet–Assisted Room Temperature NO_2 Gas Sensor Based on ZnO Hemitubes and Nanotubes Covered with TiO₂ Nanoparticles

Yoon-Seo Park¹, Hee-Jung choi¹, Sang-Min Kim¹, Ju-Eun Yang¹, Byung-Hoon Ahn¹, Semi Oh², Kyoung-Kook Kim¹

¹Tech University of Korea, Korea, ²University of Michigan, USA

[P-58]

Low–Temperature Solution Processed ZnO/TiO₂ Core–Shell Nanorods with Au Nanoparticles for Highly Sensitive NO₂ Gas Sensing at Room Temperature Assisted UV–LED

Ju-Eun Yang¹, Soon-Hwan Kwon¹, Sang-Min Kim¹, Yoon-Seo Park¹, Byung-Hoon Ahn¹, Semi Oh², Kyoung-Kook Kim¹

¹Tech University of Korea, Korea, ²University of Michigan, USA

07. UV Photonics and Photonic Devices

[P-59]

Demonstration of Photoelectroactive Artificial Synapse through Photo–Induced Doping Effect Je–Jun Lee, Jin–Hong Park *Sungkyunkwan University, Korea*

08. Wide-gap Heterostructure Physics

[P-60]

Role of Defect Levels in Ultraviolet Light-Emitting Diodes Investigated by Electrical Characteristics under Optical Pumping

SangJin Min, Jiwon Kim, Jong-In Shim, Dong-Soo Shin Hanyang University, Korea

[P-61]

Measuring and Analyzing the Surface Temperature of UV-LED Using Thermoreflectance Dong-Min Jeon, Jong-In-Shim, Dong-Soo Shin Hanyang University, Korea

[P-63]

Analysis of Temperature-Dependent Voltage Efficiency of UV-C Light Emitting Diodes

JaeHyeok Park, ChanGeun Park, IIKyu Choi, SungMok Kim, Sang–Jin Min, Jong–In Shim, Dong–Soo Shin *Hanyang University, Korea*

[P-64]

Analysis of Recombination Mechanisms in Ultraviolet Light-Emitting Diodes by Experimentally Modeling the Ideality Factor

JooHan Bae, Dong-Gu Kim, SangJin Min, Jong-In Shim, Dong-Soo Shin *Hanyang University, Korea*

[P-65]

Silicon in AlGaN and AlN: Shallow Donor or Deep DX-Center?

Olga A. Fedorova, Sergey Yu. Karpov SOFTimpact Ltd., Russia